

User’s Guide to the JCSDA Community Radiative
Transfer Model (Beta Version)

October 06, 2005

Yong Han, Paul van Delst , Quanhua Liu,

Fuzhong Weng, Banghua Yan, and John Derber

Joint Center for Satellite Data Assimilation, Camp Springs, Maryland

 i

Table of Contents

1 THIS DOCUMENT.. 5

2 CRTM OVERVIEW .. 1

2.1 CRTM COMPONENTS .. 1
2.2 FORWARD, TANGENT-LINEAR, ADJOINT AND K_MATRIX MODELS .. 3
2.3 SOFTWARE CHARACTERISTICS ... 3
2.4 SENSOR COVERAGE ... 4

3 CRTM SETUP .. 5

4 CRTM DERIVED DATA TYPES (STRUCTURES) .. 8

4.1 ATMOSPHERE STRUCTURE .. 8
4.1.1 STRUCTURE COMPONENTS ... 8
4.1.2 MEMORY ALLOCATION ROUTINE... 10
4.1.3 STRUCTURE DESTRUCTION ROUTINE ... 12
4.2 SURFACE STRUCTURE .. 13
4.2.1 STRUCTURE COMPONENTS ... 13
4.2.2 MEMORY ALLOCATION ROUTINE... 16
4.2.3 STRUCTURE DESTRUCTION ROUTINE ... 17
4.3 GEOMETRYINFO STRUCTURE ... 18
4.3.1 STRUCTURE COMPONENTS ... 18
4.4 CHANNELINFO STRUCTURE... 19
4.4.1 STRUCTURE COMPONENTS ... 19
4.5 RTSOLUTION STRUCTURE... 20
4.5.1 STRUCTURE COMPONENTS ... 21
4.5.2 MEMORY ALLOCATION ROUTINE... 21
4.5.3 STRUCTURE DESTRUCTION ROUTINE ... 22
4.6 OPTIONS STRUCTURE... 23
4.6.1 STRUCTURE COMPONENTS ... 23
4.6.2 MEMORY ALLOCATION ROUTINE... 24
4.6.3 STRUCTURE DESTRUCTION ROUTINE ... 25

5 CRTM USER INTERFACE.. 27

5.1 CRTM FLOATING-POINT KIND TYPE .. 27
5.2 ATMOSPHERE PROFILE LAYERING SCHEME ... 27
5.3 CRTM COEFFICIENT DATA FILES .. 28
5.4 ERROR CODES AND MESSAGE HANDLING ... 29
5.5 USER INTERFACE ROUTINES ... 30
5.5.1 CRTM INITIALIZATION ROUTINE CRTM_INIT .. 30
5.5.2 CHANNEL SELECTION ROUTINE CRTM_SET_CHANNELINFO ... 33

 ii

5.5.3 FORWARD MODEL ROUTINE CRTM_FORWARD.. 34
5.5.4 JACOBIAN ROUTINE CRTM_K_MATRIX.. 35
5.5.5 CRTM DESTRUCTION ROUTINE CRTM_DESTROY.. 39

APPENDIX A STRUCTURE MEMBER DEFINITION VALUES ... 40

APPENDIX B SENSOR LIST.. 42

 iii

List of Tables

TABLE 1. SUPPORTED PLATFORMS AND COMPILERS FOR THE CRTM BUILD.......................................5
TABLE 2 DESCRIPTION OF THE ATMOSPHERE STRUCTURE COMPONENTS. J = NUMBER OF

ABSORBERS, L = NUMBER OF LAYERS, NC = NUMBER OF CLOUDS AND NA = NUMBER OF
AEROSOL TYPES. THE INITIAL VALUES ARE ASSIGNED WHEN THE STRUCTURE IS
DECLARED. ...9

TABLE 3 DESCRIPTION OF THE CLOUD STRUCTURE COMPONENTS. L = NUMBER OF LAYERS. THE
INITIAL VALUES ARE ASSIGNED WHEN THE STRUCTURE IS DECLARED.9

TABLE 4 DESCRIPTION OF THE CRTM_ALLOCATE_ATMOSPHERE() FUNCTION ARGUMENTS AND
RESULT. M = NUMBER OF ATMOSPHERIC PROFILES. ...11

TABLE 5 ALLOWABLE DIMENSIONALITY COMBINATIONS FOR THE
CRTM_ALLOCATE_ATMOSPHERE() FUNCTION CALL. M = NUMBER OF ATMOSPHERIC
PROFILES. ..11

TABLE 6 VALUES ASSIGNED TO THE ATMOSPHERE STRUCTURE COMPONENTS BY THE MEMORY
ALLOCATION ROUTINE CRTM_ALLOCATE_ATMOSPHERE..12

TABLE 7 VALUES ASSIGNED TO THE CLOUD STRUCTURE COMPONENTS BY THE MEMORY
ALLOCATION ROUTINE CRTM_ALLOCATE_ATMOSPHERE..12

TABLE 8 DESCRIPTION OF THE CRTM_DESTROY_ATMOSPHERE() FUNCTION ARGUMENTS AND
RESULT. ...13

TABLE 9. DESCRIPTION OF THE SURFACE STRUCTURE COMPONENTS. ...14
TABLE 10. DESCRIPTION OF THE SENSORDATA STRUCTURE COMPONENTS. L = NUMBER OF

CHANNELS. ...15
TABLE 11. THE SURFACE STRUCTURE COMPONENTS THAT ARE CURRENTLY USED IN THE

SURFACE EMISSIVITY MODELS: Y – ACTUALLY USED, N – NOT USED (NO NEED TO BE
SPECIFIED) ..16

TABLE 12. DESCRIPTION OF THE CRTM_ALLOCATE_SURFACE() FUNCTION ARGUMENTS AND
RESULT. ...17

TABLE 13. VALUES ASSIGNED TO THE SENSNORDATA STRUCTURE COMPONENTS BY THE
MEMORY ALLOCATION ROUTINE CRTM_ALLOCATE_SURFACE(). ..17

TABLE 14. DESCRIPTION OF THE CRTM_DESTROY_SURFACE() FUNCTION ARGUMENTS AND
RESULT. ...18

TABLE 15. DESCRIPTION OF THE GEOMETRYINFO STRUCTURE COMPONENTS.................................19
TABLE 16. DESCRIPTION OF THE CHANNELINFO STRUCTURE COMPONENTS. L = NUMBER OF

CHANNELS ..20
TABLE 17. CRTM CHANNEL INDEXING SCHEME...20
TABLE 18. DESCRIPTION OF THE RTSOLUTION STRUCTURE. K – NUMBER OF ATMOSPHERIC

LAYERS..21
TABLE 19 DESCRIPTION OF THE CRTM_ALLOCATE_RTSOLUTION() FUNCTION ARGUMENTS AND

RESULT. L – NUMBER OF CHANNELS; M – NUMBER OF PROFILES...22
TABLE 20 ALLOWABLE DIMENSIONALITY COMBINATIONS FOR THE

CRTM_ALLOCATE_RTSOLUTION() FUNCTION CALL. M = NUMBER OF ATMOSPHERIC
PROFILES; L – NUMBER OF CHANNELS. ..22

TABLE 21 DESCRIPTION OF THE CRTM_DESTROY_RTSOLUTION() FUNCTION ARGUMENTS AND
RESULT. M = NUMBER OF ATMOSPHERIC PROFILES; L – NUMBER OF CHANNELS......................23

TABLE 22 DESCRIPTION OF THE OPTIONS STRUCTURE. L – NUMBER OF CHANNELS24
TABLE 23 DESCRIPTION OF THE CRTM_ALLOCATE_OPTIONS() FUNCTION ARGUMENTS AND

RESULT. ...25
TABLE 24 DESCRIPTION OF THE CRTM_DESTROY_OPTIONS() FUNCTION ARGUMENTS AND

RESULT. ...26
TABLE 25. ERROR CODE PARAMETERS PROVIDED IN THE ERROR_HANDLER MODULE.30
TABLE 26. DESCRIPTION OF THE CRTM_INIT FUNCTION ARGUMENTS AND RESULT.....................32
TABLE 27 DESCRIPTION OF THE CRTM_SET_CHANNELINFO() FUNCTION ARGUMENTS AND

RESULT. ...34

 iv

TABLE 28 DESCRIPTION OF THE CRTM_FORWARD() FUNCTION ARGUMENTS AND RESULT. L =
NUMBER OF CHANNELS; M = NUMBER OF PROFILES. ...35

TABLE 29. DESCRIPTION OF THE CRTM_K_MATRIX() FUNCTION ARGUMENTS AND RESULT........38
TABLE 30. CURRENTLY AVAILABLE JACOBIANS. THE UNITS ARE DETERMINED BY THE UNITS

OF RTSOLUTION%RADIANCE OR RTSOLUTION%BRIGHTNESS_TEMPERATURE AND BY THE
UNITS OF THE STATE VARIABLES. ...38

TABLE 31. DESCRIPTION OF THE CRTM_DESTROY() FUNCTION ARGUMENTS AND RESULT.39

List of Figures

FIGURE 1. SCHEMATIC OF THE CRTM MAJOR COMPONENTS. 2
FIGURE 2 ATMOSPHERE PROFILE LAYERING SCHEME 28

1 This Document

This document is a user’s guide to the Beta version community radiative transfer model (CRTM),
developed at the US Joint Center for Satellite Data Assimilation (JCSDA) with the joint efforts
from various academic, private and government research groups. The underline physics and
computing algorithms are documented elsewhere
(http://www.orbit.nesdis.noaa.gov/smcd/spb/CRTM/index.html) (but a brief overview is given in
Section 1.) Here in this document, we describe in details how to use the software.

Document Revision Chart

Version Primary Author(s) Description of Version Date Completed

Beta Yong Han, Paul van
Delst, Quanhua Liu

Created for limited
distribution.

October 10, 2005

 1

2 CRTM Overview

2.1 CRTM Components

The development of the CRTM is a community activity involving many scientists from various
organizations. For example, four fast radiative transfer solvers have been recently developed:
the polarized Delta-4-stream model (Liou et al., 2005), the successive order of integration (SOI)
radiative transfer model (Heidinger et al., 2005), the discrete ordinate tangent linear radiative
transfer (DOTLRT) (Voronovich et al., 2004), and the advanced doubling-adding (ADA) method
(Liu and Weng, 2005). A summary of the development activities are given by Weng et al.,
(2005). This Beta version should be seen as a starting point of the process in which contributions
from various research groups are implemented in the CRTM, evaluated, and then integrated in
the JCSDA satellite data assimilation system.

The major components of the Beta version CRTM are shown in Figure 1, followed by brief
descriptions of each component.

CRTM Components

Forward CRTM

Surface
Emissivity/Reflectivity

Model(s)

Aerosol
Absorption/Scattering

Model

Gaseous
Absorption

Model

Cloud
Absorption/Scattering

Model

RT Solution

public interfaces

CRTM Initialization CRTM DestructionK_Matrix CRTM

Component not yet completed

 2

Figure 1. Schematic of the CRTM major components.

Public interface

The CRTM public interface consists primarily of a set of user callable routines (Fortran95
functions and subroutines). For example, the CRTM initialization routine is called to load a set
of CRTM data files, which define the set of sensors and channels to be covered in the subsequent
calls to the CRTM Forward and K_Matrix (Jacobians) models, and when the model calculations
are completed the CRTM destruction routine is called to release the memory occupied by CRTM.

Gaseous absorption model

This component computes gaseous optical depth profile. Currently it is implemented with the
compact version of OPTRAN (Optical Path TRANsmittance), due to high efficiency in using
computer memory and improved Jacobians. The compact OPTRAN is derived from OPTRAN-
v6 and should not be confused with OPTRAN-v7 (see
(http://www.orbit.nesdis.noaa.gov/smcd/spb/CRTM/index.html for more detailed description)

OPTRAN currently treats water vapor and ozone as the only variable gases and other absorbing
gases as "fixed" gases.

Surface emissivity/reflectivity models

A collection of surface emissivity/reflectivity models are implemented in this version of CRTM.
The following is a list of the surface emissivity/reflectivity models.

Microwave:

• Land – LandEM (Weng et al., 2001)
• Snow and sea ice – (Yan & Weng, 2003). For some sensors it offers improved

calculations if brightness temperature observations at specified channels are provided.
• Ocean – (Liu and Weng, 2003)

Infrared:

• Ocean – IRSSE (van Delst, 2003; Wu-Smith, 1997)
• Land – measurement database for 24 surface types (NPOESS, Net Heat Flux ATBD,

2001)

In addition, the user may pass his/her own emissivity values to CRTM through the optional
arguments of the user interface.

Cloud absorption/Scattering model

This model provides cloud optical parameters such as mass extinction coefficients, single
scattering albedo, asymmetric factor and Legendre phase coefficients.

 3

RT solution

The RT solution module solves radiative transfer equation. It is currently implemented with the
Advanced Double-Adding (ADA) method (Liu and Weng, 2005).

2.2 Forward, Tangent-linear, Adjoint and K_Matrix Models

CRTM includes the forward and Jacobian models, as well as the Tangent-linear and Adjoint
models. The forward model simulates satellite observed radiances. The Jacobian model, often
called K_Matrix model, computes radiance derivatives with respect to the input state variables.
The K_Matrix model is built through the following pass:

Forward model -> Tangent-linear (TL) model -> Adjoint (AD) model -> K_Matrix (K) model

The Tangent-linear and Adjoint models may be expressed as

TLHxTLR __ = (1)
ADRHADx T __ = . (2)

where x_TL and R_TL are the input and output Tangent-linear variables (vectors) of the state and
radiance respectively, while X_AD and R_AD are the corresponding Adjoint variables. The
matrix H contains the Jacobian element,

j

i

x
R
∂
∂

,

i.e. the derivative of the radiance at the ith channel with respect to the jth state variable, and HT is
the transpose of H.

The K_Matrix model may be expressed as

]_,...,_,_[_ 2211 KRhKRhKRhKX mm= , (3)

where Ri_K (i = 1, m} is the input K radiance variable, a scalar, and hi is the transpose of the ith
row of the H matrix:

T

n

iii
i x

R
x
R

x
R

h],...,,[
21 ∂

∂
∂
∂

∂
∂

= . (4)

Thus, when setting Ri_K = 1 (i=1,m), the matrix X_K returned from the K_Matrix model
contains the Jacobians.

2.3 Software Characteristics

 4

The CRTM is a much more advanced radiative transfer model not only in physics but also in
software structure than its predecessor, pCRTM, which is applicable only under clear sky
conditions. The software is structurally well modularized - model components are contained in
various module program units. Its user interface includes a set of user callable routines
(functions and subroutines), allowing the user to integrate CRTM with the user’s application
program. Derived data types (structure) are used to organize various data and control variables
in the user interface. As the CRTM becomes more and more advanced and complex, the uses of
structure variables will greatly improve the software clarity and flexibility.

The portability of the software is another important issue and is addressed in part by the uses of
the generic kind types defined in model Type_Kinds.f90 model. The floating-point kind type is
an especially important one because it is used throughout the CRTM software package in
defining the REAL variables.

2.4 Sensor Coverage

 Currently the CRTM covers the Microwave and Infrared spectral regions. A list of the sensors
and channels for which the CRTM can be applied is presented in Appendix B.

 5

3 CRTM Setup

3.1 Builidng the CRTM library

The first step in building the CRTM library is to unpack the tarball in a CRTM directory,

$ cd CRTM
$ tar xvzf JCSDA_CRTM.tar.Z

This will create the following directory structure,

$ ls –laF
total 964K
-rw-r--r-- 1 wd20pd wd4 920K Oct 21 12:53 JCSDA_CRTM.tar.Z
drwxr-xr-x 2 wd20pd wd4 4.0K Oct 21 11:49 include/
drwxr-xr-x 2 wd20pd wd4 4.0K Oct 21 11:50 lib/
-rw-r--r-- 1 wd20pd wd4 21K Oct 21 11:41 make.macros
-rw-r--r-- 1 wd20pd wd4 3.0K Oct 21 11:46 makefile
drwxr-xr-x 3 wd20pd wd4 4.0K Oct 21 12:15 src/

The compilation macros and flags for various systems are contained within the file make.macros.
The supported platforms and compilers, along with their available makefile targets are,

makefile Targets
Platform Compiler

Production (default) Debug
IBM AIX xlf95 aix aix_debug

SunOS f95 sun sun_debugError!
Bookmark not
defined.

Linux PGI pgf95 (v6.0-5) pgi pgi_debug1

Linux Intel ifort (v8.1.023) intel intel_debug

Linux Lahey2 lf95 (v6.2c) lahey lahey_debug

Linux g95 g95 (Oct 19, 2005) g95 g95_debug

Table 1. Supported platforms and compilers for the CRTM build.

The Sun platform has been only minimally tested. The make.macros file also contains Linux
entries for Absoft and gfortran but these are totally untested.

For IBM and Sun systems, as well as a Linux system with the Lahey compiler, simply typing,

$ make

1 The PGI compiler does not successfully build for the debug target. This is being investigated.
2 This is specified as the default Linux compiler in the make.macros file.

 6

should invoke the required compiler. If the build platform is a Linux system and the compiler is
one of the others listed in Table 1 , g95 for example, then typing,

$ make g95

Continuing with the Linux g95 example, the output from the make command will look like

$ make g95
cd src; make g95; cd ..
make[1]: Entering directory `/usr1/wd20pd/scratch/src'
make -f makefile library "FC=g95" "FL=g95" "FC_FLAGS= -c -O2 -fendian=big -ffree-form -fno-
second-underscore -std=f95 " "FL_FLAGS= -o" "ENDIAN=Little_Endian"
make[2]: Entering directory `/usr1/wd20pd/scratch/src'
g95 -c -O2 -fendian=big -ffree-form -fno-second-underscore -std=f95 Type_Kinds.f90
g95 -c -O2 -fendian=big -ffree-form -fno-second-underscore -std=f95 File_Utility.f90
g95 -c -O2 -fendian=big -ffree-form -fno-second-underscore -std=f95 Error_Handler.f90
g95 -c -O2 -fendian=big -ffree-form -fno-second-underscore -std=f95 Compare_Float_Numbers.f90
…etc…

Note: Currently, invoking the PGI debug target, make pgi_debug, will not successfully build the
CRTM library. The regular PGI target, make pgi, does build successfully. A compiler bug is
suspected, but this is still being investigated.

At the end of the compile process, the include files and CRTM library are moved to their
respective directories by typing,

$ make install

The CRTM library can then be used by compiling programs with the switch

–ICRTM/include

and linking with the switches

-LCRTM/lib –lCRTM

where the actual location of the CRTM include and lib directories must be correctly specified
for each user’s system.

3.2 Compiling the Test Program
A test program tarball, Test_K_Matrix_software.tar.Z, has also been provided. To compile
this code unpack the tarball and, in the same manner as for the CRTM library build, invoke make,

$ tar xvzf Test_K_Matrix_software.tar.Z
$ make

Note: The default CRTM include and library directory locations are specified in the test code
makefile as

INCLUDES=-I$(HOME)/local/CRTM/include
LIBRARIES=-L$(HOME)/local/CRTM/lib –lCRTM

 7

To specify other locations, the file makefile must be edited.

The test code tarball also contains instrument coefficient data files for three different sensors,

• NOAA-17 AMSU-A (prefix amsua_n17)
• NOAA-17 HIRS/3 (prefix hirs3_n17)
• DMSP-16 SSMIS (prefix ssmis_f16)

as well as the other data (cloud optical properties, surface emissivity model coefficients, etc)
required for the CRTM test.

The included data files are big-endian, unformatted, sequential files and compiler options for the
Linux compilers have been included to allow these files to be read on little-endian systems. The
one exception is the Lahey compiler which uses run-time options to allow this capability. So, the
test program can be invoked by typing

$ Test_K_Matrix

for any build except that for a Linux platform using the Lahey compiler. In this case, the
program is invoked by typing,

$ Test_K_Matrix –Wl,-T

(note that the last character of –Wl is a lower case “ell”, not the number one.)

Each run for a particular instrument will create an output file. For the AMSU-A example this file
is called,

amsua_n17.CRTM_Test_K-Matrix.output

This file can be compared to the baseline output supplied with the test code tarball,

amsua_n17.CRTM_Test_K-Matrix.output.Baseline

(similarly for the HIRS/3 and SSMIS). Note that small differences in the numbers are to be
expected due to differences in the compilers and the options used.

 8

4 CRTM Derived Data Types (Structures)

This section describes the CRTM derived data types or structures (In Fortran90/95, structures are
strictly referred to as “derived types,” however the terms structure and derived type will be used
interchangeably in this document). Program routines that allocate memory for the structures that
have array pointers are also discussed.

4.1 Atmosphere Structure

The Atmosphere structure is used to store data representing the atmospheric state. It is also used
as a TL, AD or K variable in the Tangent-linear, Adjoint and K_Matrix model calculations (see
Section 2.2).

Structure type name

CRTM_Atmosphere_type

Source module

CRTM_Atmosphere_Define

Example of structure declaration

Type(CRTM_Atmosphere_type) :: Atmosphere

4.1.1 Structure Components

The structure components are described in below in Table 2 and Table 3.

Name Type Dimension Initial value Description

Max_Layers Integer Scalar 0 Maximum number of
atmospheric layers

N_Layers Integer Scalar 0 Number of atmospheric layers.

N_Absorbers Integer Scalar 0 Number of atmospheric
absorbers (H2O, O3, etc.)

Max_Clouds Integer Scalar 0 Maximum number of clouds
N_Clouds Integer Scalar 0 Number of clouds

Max_Aerosols Integer Scalar 0 Maximum number of aerosol
types

N_Aerosols Integer Scalar 0 Number of aerosol types

Absorber_ID Integer pointer Rank-1 (J) NULL()

A flag value to identify a
molecular species in the

absorber profile array (see A1
for valid IDs and discussion #1)

 9

Pressure Real(fp_kind) Pointer Rank-1
(L) NULL() Layer pressure profile (hPa)

Level_Pressure Real(fp_kind) Pointer Rank-1 (0:L) NULL() Pressure boundaries of the layer
pressure profile (hPa)

Temperature Real(fp_kind) Pointer Rank-1 (L) NULL() Layer temperature profile (K)

Absorber Real(fp_kind) Pointer Rank-2 (L x J) NULL()
Layer absorber amount profiles
(See A1 for valid absorber IDs

and units)

Cloud CRTM_Cloud_type
Pointer Rank-1 (Nc) NULL() Structure containing cloud data

(see Table 2)

Aerosol CRTM_Aerosol_type
Pointer Rank-1 (Na) NULL()

Structure containing aerosol
data (see discussion #2),

currently not used.

Table 2 Description of the Atmosphere structure components. J = number of
absorbers, L = number of layers, Nc = number of clouds and Na =
number of aerosol types. The initial values are assigned when the
structure is declared.

Name Type Dimension Initial value Description

N_Layers Integer Scalar 0 Maximum number of
atmospheric layers

Type Integer Scalar NO_CLOUD

Flag value indicating the cloud
type

(see A2 for the valid cloud
types)

Effective_Radius Real(fp_kind) Pointer Rank-1
(L) NULL()

The effective radius of the
cloud particle size distribution

(microns)

Water_Content Real(fp_kind) Pointer Rank-1 (L) NULL() The water content of the cloud
(kg.m^-2)

Table 3 Description of the Cloud structure components. L = number of layers.
The initial values are assigned when the structure is declared.

Discussions

(1) Currently water vapor (H2O) and ozone (O3) are the only valid absorber types. Their

symbolic parameter names and units are given in A1. The following is an example of how
to set the absorber IDs after the structure variable Atmosphere is declared and allocated:

Atmosphere%n_abosrbers = 2
Atmosphere%Absorber_IDs(1) = H2O_ID
Atmosphere%Absorber_IDs(2) = O3_ID

Note that, for microwave sensors, the ozone profile in Atmosphere%Absorber(:, 2) does not need
to be specified.
(2) Currently the aerosol components in the structure are placeholders. The user should declare

the Atmosphere structure as if there are no aerosols (set the argument variable n_Aerosols =
0 when calling the memory allocation routine CRTM_Allocate_Atmosphere, see 4.1.2).

(3) The cloud profile layering scheme is the same as that for temperature and gaseous absorbers.

 10

(4) The Atmosphere structure may contain more than just one cloud, usually clouds of different
types.

4.1.2 Memory Allocation Routine

Before populating the Atmosphere structure it must first be allocated using
CRTM_Allocate_Atmosphere.

Calling Sequence

Error_Status = CRTM_Allocate_Atmosphere(n_Layers, &
 n_Absorbers, &
 n_Clouds, &
 Atmosphere, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument descriptions

The arguments for this function are described in Table 4.

 11

Name Type Dimension Description
Mandatory Input Arguments

n_Layers INTEGER
Scalar or

Rank-1 (M)
The number of layers for which there is
Atmosphere profile data.

n_Absorbers INTEGER Scalar The number of gaseous absorbers for
which there is Atmosphere profile data.

n_Clouds INTEGER
Scalar or

Rank-1 (M)

The number of clouds for a particular
Atmosphere structure. Can be = 0, i.e.
clear sky.

n_Arosols INTEGER
Scalar or

Rank-1 (M)

 The number of aerosols. For now
should be set n_Arosole = 0 (the
Aerosol component has not yet been
completed)

Optional Input Arguments

Message_Log CHARACTER(*) Scalar
Filename in which any messages will
be logged. Default action is to output
messages to screen (stdout).

Mandatory Output Arguments

Atmosphere CRTM_Atmosphere_type
Scalar or

Rank-1 (M). See
Table 4.

Atmosphere structure or structure array
with allocated pointer members.

Optional Output Arguments
RCS_Id CHARACTER(*) Scalar String containing the Revision Control

System Id field for the module.
Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 4 Description of the CRTM_Allocate_Atmosphere() function arguments
and result. M = number of atmospheric profiles.

The dimensionality of the output Atmosphere structure is determined by the dimensionality of
the input arguments in the CRTM_Allocate_Atmosphere() function. The allowed input/output
argument dimension combinations are shown in Table 5. Note that, currently, the number of
absorbers cannot vary with the profile. These multiple interfaces are supplied purely for ease of
use depending on what data is available.

Input n_Layers
Dimension

Input n_Absorbers
Dimension

Input n_Clouds
Dimension

Output Atmosphere
Dimension

Scalar Scalar Scalar Scalar
Scalar Scalar Scalar M

M Scalar M M
Scalar Scalar M M

M Scalar Scalar M
Table 5 Allowable dimensionality combinations for the

CRTM_Allocate_Atmosphere() function call. M = number of
atmospheric profiles.

Content of the structure when it is returned

 12

Atmosphere
Component Name Assigned value Comments

Max_Layers n_layers (argument)
n_Layers n_layers (argument)

n_Absorbers n_abosrbers (argument)
Max_Clouds n_clouds (argument)

n_Clouds n_clouds (argument)
Max_Aerosols n_aeorsols (argument)

n_Aerosols n_aerosols (argument)

These components are assigned with the values from
the function’s arguments

Absorber_ID INVALID_ABSORBER_ID
Absorber_Units INVALID_ABSORBER_UNITS

Pressure filled with ZERO
Level_Pressure filled with ZERO

Temperature filled with ZERO
Absorber filled with ZERO

Cloud See Table 6 Allocated if n_cloud > 0
Aerosol Currently not used

Table 6 Values assigned to the Atmosphere structure components by the memory
allocation routine CRTM_Allocate_Atmosphere.

The Cloud structure is allocated if the argument n_clouds > 0. When allocated, the structure is
assigned with the values listed below in Table 7.

Cloud
Component Name Assigned value Comments

n_Layers n_layers (argument)
Type NO_CLOUD

Effective_Radius Filled with ZERO
Water_Content Filled with ZERO

Table 7 Values assigned to the Cloud structure components by the memory
allocation routine CRTM_Allocate_Atmosphere.

4.1.3 Structure Destruction Routine

Calling sequence

Error_Status = CRTM_Destroy_Atmosphere(Atmosphere, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument Description

The arguments for this function are described below in Table 8.

 13

Name Type Dimension Description
Mandatory Input/Output Arguments

Atmosphere CRTM_Atmosphere_type
Scalar or

Rank-1 (M).
Atmosphere structure or structure
array.

Optional Input Arguments

Message_Log CHARACTER(*) Scalar
Filename in which any messages will
be logged. Default action is to output
messages to screen (stdout).

Optional output arguments
RCS_Id CHARACTER(*) Scalar String containing the Revision Control

System Id field for the module.
Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 8 Description of the CRTM_Destroy_Atmosphere() function arguments and
result.

4.2 Surface Structure

The Surface structure is used to hold data describing the surface condition in the surface
emission and reflection calculations. It is also used as a TL, AD or K variable in the Tangent-
linear, Adjoint and K_Matrix model calculations (see Section 2.2).

Structure type name

CRTM_Surface_type

Source module

CRTM_Surface_Define

Example of structure declaration

Type(CRTM_Surface_type) :: Surface

4.2.1 Structure Components

The Surface structure components are described in Table 9 and Table 10. Depending on the
surface emission and reflection models, some of the components may not be actually used and
therefore can be ignored (see Table 11.)

Name Type Dimension Initial or

default value Description

Gross type of surface determined by coverage

 14

Land_Coverage Real(fp_kind) Scalar ZERO Fraction of surface that is of
the land surface type

Water_Coverage Real(fp_kind) Scalar ZERO Fraction of surface that is of
the water surface type

Snow_Coverage Real(fp_kind) Scalar ZERO Fraction of surface that is of
the snow surface type

Ice_Coverage Real(fp_kind) Scalar ZERO Fraction of surface that is of
the ice surface type

Land surface type data

Land_Type Integer Scalar GRASS_SOIL The land surface type. See A3
for the valid types

Land_Temperature Real(fp_kind) Scalar 283.0 The land surface temperature
(K).

Soil_Moisture_Cont
ent Real(fp_kind) Scalar 0.05 The volumetric water content

of the soil (g.cm^-3).
Canopy_Water_Con

tent Real(fp_kind) Scalar 0.05 The gravimetric water content
of the canopy (g.cm^-3).

Vegetation_Fraction Real(fp_kind) Scalar 0.3 The vegetation fraction of the
surface.

Soil_Temperature Real(fp_kind) Scalar 283.0 The soil temperature (K).
Water type data

Water_Type Integer Scalar SEA_WATER The water surface type.

Water_Temperature Real(fp_kind) Scalar 283.0 The water surface temperature
(K).

Wind_Speed Real(fp_kind) Scalar 5.0 Surface wind speed (m.s^-1)

Wind_Direction Real(fp_kind) Scalar 0.0 Surface wind direction in
degree east from North

Salinity Real(fp_kind) Scalar 33.0 Water salinity (ppmv)
Snow surface type data

Snow_Type Integer Scalar NEW_SNOW The snow surface type. See A3
for the valid types

Snow_Temperature Real(fp_kind) Scalar 263.0 The snow surface temperature
(K).

Snow_Depth Real(fp_kind) Scalar 50.0 The snow depth (mm).
Snow_Density Real(fp_kind) Scalar 0.2 The snow density (g.cm^-3)

Snow_Grain_Size Real(fp_kind) Scalar 2.0 The snow grain size (mm).
Ice surface type data

Ice_Type Integer FRESH_ICE The ice surface type.

Ice_Temperature Real(fp_kind) Scalar 263.0 The ice surface temperature
(K).

Ice_Thickness Real(fp_kind) Scalar 10.0 The thickness of the ice (mm)
Ice_Density Real(fp_kind) Scalar 0.9 The ice density (g.cm^-3)

Ice_Roughness Real(fp_kind) Scalar ZERO Measure of the surface
roughness of the ice

SensorData containing channel brightness temperatures

SensorData
CRTM_SensorData_Type Scalar See Table 9

Satellite sensor data required
for some surface algorithms.

Can be left empty.

Table 9. Description of the Surface structure components.

The structure, SensorData, a component of the Surface structure, holds satellite sensor
measurements for those algorithms that may use the data to improve the results. The SensorData
structure components are described below in Table 10.

 15

Name Type Dimension Initial value Description
n_Channels Ingeter Scalar 0 Number of the channels

Sensor_ID Integer Scalar INVALID WMO sensor ID (see A3.5 for
the valid sensor ID)

Tb Real(fp_kind) pointer Rank-1 (L) NULL() The sensor brightness
temperatures (K).

Table 10. Description of the SensorData structure components. L = number of
channels.

Discussions

(1) The four surface-coverage variables, Land_Coverage, Water_Coverage, Ice_Coverage
and Snow_Coverage must be assigned appropriate fraction values with a sum equal to 1.

(2) When any of the four surface-coverage variables is assigned a non-zero value, the
corresponding structure components should be specified, otherwise default values are
used. For example, when Water_Coverage > 0, the structure components,
Water_Temperature, Wind_Speed and Salinity must be assigned appropriate values if the
default values are not the wanted ones in order to correctly use the microwave ocean
surface emissivity model.

(3) The set of the structure components under each of the four surface types is a union of the
required components used in different surface emissivity/reflectivity. Thus, for a
particular surface type and sensor, some of the listed structure components may not be
actually used and therefore does not need to be specified. For example, for an ocean
surface, the salinity structure component should be specified for a microwave sensor, but
may be ignored for an infrared sensor. See Table 11 for descriptions of the requirements
for the various surface type components.

(4) Currently only a few microwave sensors are offered with the improved surface emission
models that require the brightness temperature measurements, stored in the SensorData
structure. See A3.5 for a list of the sensors and conditions. If the SensorData structure
component Sensor_ID = INVALID, a default surface emission model will be applied.

Variable Name Used in the Forward, K_Matrix Model calculations?
 Microwave Sensor Infrared Sensor

Land_Coverage Y Y
Water_Coverage Y Y
Snow_Coverage Y Y

Ice_Coverage Y Y
Land_Type N Y

Land_Temperature Y Y
Soil_Moisture_Content Y N
Canopy_Water_Content N N

Vegetation_Fraction Y N
Soil_Temperature Y N

Water_Type N N
Water_Temperature Y Y

 16

Wind_Speed Y Y
Wind_Direction N N

Salinity Y Y
Snow_Type N Y

Snow_Temperature Y Y
Snow_Depth Used only for AMSUA/B sensors N

Snow_Density N N
Snow_Grain_Size N N

Ice_Type N N
Ice_Temperature Y Y

Ice_Thickness Y N
Ice_Density N N

Ice_Roughness N N
SensorData Used for the sensors listed in A3.3 N

Table 11. The surface structure components that are currently used in the surface
emissivity models: Y – Actually used, N – not used (no need to be
specified)

4.2.2 Memory Allocation Routine

The only component of the Surface structure that needs memory allocation is the SensorData
structure component – all others are scalars. Thus, if no satellite data is needed for the surface
algorithms, or if none is available, then a user can either a) simply not call the Surface allocation
function, or b) call the function, but with the n_Channels argument set to 0.

Calling Sequence

Error_Status = CRTM_Allocate_Surface(n_Channels, &
 Surface, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument descriptions

The arguments for this function are described below in Table 12.

 17

Name Type Dimension Description
Mandatory Input Arguments

N_Channels INTEGER Scalar The number of channels of satellite data
required for some surface algorithms.

Optional Input Arguments

Message_Log CHARACTER(*) Scalar
Filename in which any messages will be
logged. Default action is to output
messages to screen (stdout).

Mandatory Output Arguments
Surface CRTM_Surface_type

Scalar or
Rank-1 (M).

Surface structure or structure array with
allocated pointer members.

Optional Output Arguments
RCS_Id CHARACTER(*) Scalar String containing the Revision Control

System Id field for the module.
Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 12. Description of the CRTM_Allocate_Surface() function arguments and
result.

Content of the structure when it is returned

When CRTM_Allocate_Surface is returned, the only changed component of the Surface
structure is SensorData structure. It is allocated and assigned the values listed below in Table 13.

SensorData
Component Name Assigned value Comments

n_Channels n_layers (argument)
Sensor_ID INVALID

Tb Filled with ZERO

Table 13. Values assigned to the SensnorData structure components by the memory
allocation routine CRTM_Allocate_Surface().

4.2.3 Structure Destruction Routine

Calling sequence

The Surface structure destruction calling sequence is,

Error_Status = CRTM_Destroy_Surface(Surface, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument Description

 18

The arguments for this function are described in Table 14.

Name Type Dimension Description
Mandatory Input/Output Arguments

Surface CRTM_Surface_type
Scalar or

Rank-1 (M).
Surface structure or structure array.

Optional Input Arguments

Message_Log CHARACTER(*) Scalar
Filename in which any messages will
be logged. Default action is to output
messages to screen (stdout).

Optional output arguments
RCS_Id CHARACTER(*) Scalar String containing the Revision Control

System Id field for the module.
Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 14. Description of the CRTM_Destroy_Surface() function arguments and
result.

4.3 GeometryInfo Structure

The GeometryInfo structure contains geometry data such as the Earth location, satellite view
angle, etc.

Structure type name

CRTM_GeometryInfo_type

Source module

CRTM_ GeometryInfo _Define

Example of structure declaration

Type(CRTM_ GeometryInfo _type) :: GeometryInfo

4.3.1 Structure Components

The structure components currently required are described below in Table 15.

Name Type Dimension Initial value Description

Sensor_Zenith_Angle Real(fp_kind) Scalar ZERO The sensor zenith angle (degrees)

Satellite_Height Real(fp_kind) Scalar 800km (Default) Height of the satellite above the
Earth surface (for AMSUA/B sensors

 19

only)
Source_Zenith_Angle Real(fp_kind) Scalar FP_INVALID Solar zenith angle (for IR sensors)

Table 15. Description of the GeometryInfo structure components.

Discussion

Since the structure components are all scalar, there is no memory allocation routine for the
structure.

4.4 ChannelInfo Structure

The ChannelInfo structure holds the sensor channel data, which tell the CRTM model which
sensors and channels are included in the subsequent model calculations.

Structure type name

CRTM_ChannelInfo_type

Source module

CRTM_ChannelInfo_Define

Example of structure declaration

Type(CRTM_ChannelInfo_type) :: ChannelInfo

4.4.1 Structure Components

The structure components are described below in Table 16.

Name Type Dimension Initial value Description

n_Channels Integer Scalar 0 Total number of channels.

Channel_Index Integer pointer Rank-1 (L) NULL()

The index of the channels
loaded during CRTM

initialization (see discussion
#2).

Sensor_Channel Integer pointer Rank-1 (L) NULL() The sensor channel number

Sensor_Descriptor Character pointer Rank-1 (L) NULL()
A character string containing a
description of the satellite and

sensor sensor name

NCEP_Sensor_ID Integer pointer Rank-1 (L) NULL()

The NCEP/EMC "in-house"
value used to distinguish

between different
sensor/platform combinations.

WMO_Satellite_ID Integer pointer Rank-1 (L) NULL() The WMO Satellite ID number
WMO_Sensor_ID Integer pointer Rank-1 (L) NULL() The WMO Sensor ID number

 20

Table 16. Description of the ChannelInfo structure components. L = number of
channels

Discussion

(1) Unlike the Atmosphere and Surface structures, whose components are in general require
appropriate assignments by the user, the ChannelInfo structure components are filled with
the required data by the CRTM initialization routine CRTM_Init or the channel selection
routine CRTM_Set_ChannelInfo (see 5.5.1 and 5.5.2).

(2) The Channel_Index array contains the indexes of the channel array loaded during CRTM
initialization; the Sensor_Channel array contains the channel numbers for particular
sensor(s). In general the two arrays are not the same. For example, Table 17 lists the
Channel indexes for the channel array loaded during CRTM initialization. These channels
belong to two different sensors, one with 2 channels and the other 4, whose channel
numbers are given by the Sensor_Channel array. The Sensor_Descriptor array (or one of
the three ID arrays) may be used to identify the sensor to which a particular channel
belongs.

(3) The ChannelInfo structure is destroyed when the CRTM_Destroy routine is called (see
5.5.5).

Channel_Index 1 2 3 4 5 6
Sensor_Channel 1 2 1 2 3 4

Sensor_descriptor Sensor-1 Sensor-1 Sensor-2 Sensor-2 Sensor-2 Sensor-2

Table 17. CRTM channel indexing scheme

4.5 RTSolution Structure

The RTSolution structure is used to hold the results returned from the CRTM calculations. It is
also used as a TL, AD or K variable in the Tangent-linear, Adjoint and K_Matrix model
calculations (see Section 2.2).

Structure type name

CRTM_RTSolution_type

Source module

CRTM_RTSolution_Define

Example of structure declaration

Type(CRTM_RTSolution_type) :: RTSolution

 21

4.5.1 Structure Components

The RTSolution structure components are listed below in Table 18.

Name Type Dimension Initial value Description

Radiance REAL(fp_lind) Scalar ZERO Channel radiance
(mW/(m2.sr.cm-1))

Brightness
Temperatuer REAL(fp_lind) Scalar ZERO Brightness temperature (K)

Surface_Emissivity REAL(fp_lind) Scalar ZERO Surface emissivity at the
observation zenith angle

n_Layers Integer Scalar 0 Number of layers

Layer_Optical_Depth Real(fp_kind)
pointer Rank-1 (K) NULL()

Optional. If this array is
allocated, it contains layer total

optical depth profile, if not
allocated, access this array is an

invalid operation.

Table 18. Description of the RTSolution structure. K – number of atmospheric
layers

4.5.2 Memory Allocation Routine

The only component of the RTSolution structure that needs memory allocation is the optional
Layer_Optical_Depth structure component – all others are scalars. It holds the returned optical
depth profile. If the optical depth profile is not needed, then a user does not required to call this
routine to allocate memory for this component.

Calling Sequence

Error_Status = CRTM_Allocate_RTSolution(n_layers, &
 RTSolution, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument descriptions

The arguments for this function are described below in Table 19 and Table 20.

 22

Name Type Dimension Description
Mandatory Input Arguments

n_Layers INTEGER
Scalar or

Rank-1 (L)
The number of layers for which there is
Atmosphere profile data.

Optional Input Arguments

Message_Log CHARACTER(*) Scalar
Filename in which any messages will
be logged. Default action is to output
messages to screen (stdout).

Mandatory Output Arguments

RTSolution CRTM_RTSolution_type

Scalar or
Rank-1 (L or M)
or Randk-2 (L x
M). See Table 4.

Atmosphere structure or structure array
with allocated pointer members.

Optional Output Arguments
RCS_Id CHARACTER(*) Scalar String containing the Revision Control

System Id field for the module.
Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 19 Description of the CRTM_Allocate_RTSolution() function arguments and
result. L – number of channels; M – number of profiles

Input n_Layers Dimension Output RTSolution Dimension

Scalar Scalar, L, M, or L x M
L L, M, or L x M

Table 20 Allowable dimensionality combinations for the
CRTM_Allocate_RTSolution() function call. M = number of atmospheric
profiles; L – number of channels.

4.5.3 Structure Destruction Routine

Calling sequence

The RTSolution structure destruction calling sequence is,

Error_Status = CRTM_Destroy_RTSolution(RTSolution, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument Description

The arguments for this function are described in Table 21.

 23

Name Type Dimension Description
Mandatory Input/Output Arguments

RTSolution CRTM_RTSolution_type
Scalar or

Rank-1 (L or M)
or Rank2 (L x M)

RTSolution structure or structure array.

Optional Input Arguments

Message_Log CHARACTER(*) Scalar
Filename in which any messages will
be logged. Default action is to output
messages to screen (stdout).

Optional output arguments
RCS_Id CHARACTER(*) Scalar String containing the Revision Control

System Id field for the module.
Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 21 Description of the CRTM_Destroy_RTSolution() function arguments and
result. M = number of atmospheric profiles; L – number of channels.

4.6 Options Structure

The Options structure is used to hold optional input data.

Structure type name

CRTM_Options_type

Source module

CRTM_Options_Define

Example of structure declaration

Type(CRTM_Options_type) :: Options

4.6.1 Structure Components

The structure components are described below in Table 22.

Name Type Dimension Initial value Description

n_Channels Integer Scalar 0 Number of channels.

Emissivity_Switch Integer Scalar 0 (NOT_SET)
An integer switch value to indicate

emissivity spectrum I/O (See
discussion #1)

Emissivity REAL(fp_kind) pointer Rank-1 (L) NULL() Array to hold the user-supplied

 24

emissivity spectrum at the
observation zenith angle direction

(see discussion #2)

Direct_Reflectivity
_Switch Integer Scalar 0 (NOT_SET)

An integer switch value to indicate
direct reflectivity spectrum I/O

(See discussion #1)

Direct_Reflectivity REAL(fp_kind) pointer Rank-1 (L) NULL() Array to hold the user-supplied
direct reflectivity spectrum

Table 22 Description of the Options structure. L – number of channels

Discussions

(1) If Emissivity_Switch = 0, the surface emissivity spectrum is computed internally
 [**DEFAULT**].

If Emissivity_Switch = 1, the surface emissivity spectrum is supplied by the user in the
Surface_Emissivity component

If Direct_Reflectivity_Switch = 0, the surface direct reflectivity spectrum used is (1-
emissivity) [**DEFAULT**].
If Direct_Reflectivity_Switch = 1, the surface direct reflectivity is spectrum is supplied
by the user in the Options%Direct_Reflectivity component

(2) When using the user-supplied surface emissivity, the CRTM assumes a specular surface
for MW sensors over ocean and a Lambertian surface for all other situations.

4.6.2 Memory Allocation Routine

Calling Sequence

Error_Status = CRTM_Allocate_Options(n_Channels, &
 Options, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument descriptions

The arguments for this function are described below in Table 23.

 25

Name Type Dimension Description
Mandatory Input Arguments

n_Channels INTEGER Scalar

The number of channels used to
specify the input spectral data. This
value must agree with the number of
channels used to define other
mandatory spectral CRTM inputs.

Optional Input Arguments

Message_Log CHARACTER(*) Scalar
Filename in which any messages will
be logged. Default action is to output
messages to screen (stdout).

Mandatory Output Arguments

Options CRTM_Options_type Scalar or Rank-1

Options structure with allocated pointer
members. The rank-1 case is for
handling separate Options structures
for different profiles. Note that each
element of the rank-1 case is allocated
to the same number of channels.

Optional Output Arguments
RCS_Id CHARACTER(*) Scalar String containing the Revision Control

System Id field for the module.
Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 23 Description of the CRTM_Allocate_Options() function arguments and
result.

4.6.3 Structure Destruction Routine

Calling sequence

The Options structure destruction calling sequence is,

Error_Status = CRTM_Destroy_Options(Options1, &
 [Options2, …, Options10], &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument Description

The arguments for this function are described in Table 24.

 26

Name Type Dimension Description
Mandatory Input/Output Arguments

Options1,
[Options2, …,
Options10]

CRTM_Options_type Scalar or Rank-1

Structure(s) to be re-initialized. At least
one structure or structure array must be
specified and no more than 10
structures or structure arrays must be
specified.

Optional Input Arguments

Message_Log CHARACTER(*) Scalar
Filename in which any messages will
be logged. Default action is to output
messages to screen (stdout).

Optional output arguments
RCS_Id CHARACTER(*) Scalar String containing the Revision Control

System Id field for the module.
Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 24 Description of the CRTM_Destroy_Options() function arguments and
result.

 27

5 CRTM User Interface

5.1 CRTM Floating-Point Kind Type

Fortran 90/95 allows users a new methodology to specify the precision of intrinsic data types,
that is, specifying what “kind” of intrinsic type you want. Although we have defined several
kind types for integer and floating-point (real) data types in the Type_Kinds.f90 module, the
following discussion is limited to the floating-point kind type, fp_kind, since it has been applied
throughout the CRTM code where floating point variables and parameters are defined3.

Consider the following example of a kind definition module for real numbers only, and a simple
program that uses it,

MODULE type_kinds
 IMPLICIT NONE
 INTEGER, PARAMETER :: Single = SELECTED_REAL_KIND(6)
 INTEGER, PARAMETER :: Double = SELECTED_REAL_KIND(15)
 INTEGER, PARAMETER :: fp_kind = Double
END MODULE type_kinds

PROGRAM test_kinds
 USE type_kinds
 REAL(fp_kind) :: x, y
 x = 1.0_fp_kind
 y = x + 1.0_fp_kind
END PROGRAM test_kinds

By using the generic kind type in the program, rather than the specific types, Single or Double,
the precision of numbers used in the program can be changed simply by changing the definition
in the type_kinds module, and recompiling. This can be useful in identifying sections of an
algorithm that are sensitive to the numerical precision of the variables it uses and eliminate the
mixing of precisions of variables (e.g. in expressions containing both single and double precision
floating point numbers) since this can introduce numerical instabilities into algorithms. More
importantly it ensures the program being portable to various computer platforms, which may
have different hardware presentations for numerical computation. We strongly recommend the
user to the kind type fp_kind to declare all the floating-point variables that are interacted with the
CRTM user interface.

5.2 Atmosphere Profile Layering Scheme

CRTM requires layer atmospheric profiles, that is, variables such as temperature and water vapor
do not vary in the layer. The vertical coordinates is given by the layer pressures, accompanied
with the level pressures describing the layer boundaries. This layering scheme is illustrated in

3 An exception to this rule is for data file I/O where specific kind types are used.

 28

Figure 2. The profile data are stored in arrays with the pressure data in ascending order. The
first element of the level pressure array is indexed with an integer value 0, but for the arrays
holding the layer quantities the index value starts at 1. The CRTM does not require a fixed
number of layers and layer thicknesses, but it does require that the number of layers do not
exceed MAX_N_LAYERS (currently 100), defined in module CRTM_Parameters.f90 and the
user need to set the top pressure level at 0.005 hPa to be consistent to the coefficient data set of
the gaseous absorption model. It is the user’s responsibility to supply a meaningful atmospheric
profile.

Level_p(N-1)

Level_p(N)
Layer_p(N), Layer_t(N), Layer_H2O(N), …{N

Level_p(i-1)

Level_p(i)
Layer_p(i), Layer_t(i), Layer_H2O(i), …

Level_p(0) = 0.005 hPa

Level_p(1)
Layer_p(1), Layer_t(1), Layer_H2O(1), …

{

{

i (> 1)

1

Earth Surface

Figure 2 Atmosphere profile layering scheme

5.3 CRTM Coefficient Data files

The CRTM computing algorithms rely heavily on a set of pre-prepared data sets. These data are
stored in several binary files, and are all loaded into the CRTM data variables during the CRTM
initialization phase. These files may be divided into two groups: one with data specific to a
collection of sensors and the other valid for all sensors or the sensors in a whole spectral region
such as Microwave and Infrared. The sensor-sensitive data files determine the range of the
sensors for which the CRTM can be applied. For example, if the files contain data for one sensor
only, calling CRTM model for other sensors would be an illegal operation. The sensor-sensitive
files are originally generated with one sensor per file, but the user can concatenate them into files
that work for multiple sensors by using the tools included in the CRTM software package. In the
following we provide only brief introductions of the data files, since knowing their details is not
necessary.

 29

Spectral coefficient (SpcCoeff) file

The file contains spectral coefficient data about particular sensors, including satellite and sensor
identifications, sensor type (microwave, infrared, or visible), channel numbers and channel
central frequencies. A collection of the SpcCoeff files, each containing data for one sensor only,
has been archived. The user may concatenate them into one file for the desired sensors using the
CRTM utility tools. The CRTM loads only one SpcCoeff file. The coefficient data files and the
software to concatenate them can be obtained on line at
http://cimss.ssec.wisc.edu/~paulv/Fortran90/CRTM/Developmental

Optical depth (TauCoeff) coefficient file

The file contains coefficient data specific to a set of sensors for use in gaseous optical depth
calculations. It must be consistent with the SpcCoeff file in the range of the sensors included. A
collection of the SpcCoeff files, each containing data for one sensor only, has been archived. The
user may concatenate the files for a set of desired sensors into a single file using the CRTM
utility tools. The CRTM loads only one TauCoeff file. The coefficient data files and the
software to concatenate them can be obtained on line at
http://cimss.ssec.wisc.edu/~paulv/Fortran90/CRTM/Developmental

Cloud coefficient (CloudCoeff) file

The file contains cloud optical parameters and lookup tables such as mass extinction coefficients,
single scattering albedo, asymmetry factors and Legendre expansion coefficients. These data are
not sensor specific.

Surface Emissivity coefficient (EmisCoeff) file

The file currently contains coefficient data for computing infrared ocean surface emissivity.
These data are not sensor specific.

Aerosol coefficient (AerosolCoeff) file

Currently it is a dummy file, used as a placeholder.

5.4 Error codes and message handling

In an effort to introduce some form of graceful error traceback utility, the error_handler.f90
module is provided. This module defines simple error codes and contains a routine to output
messages. The available error code parameters are shown in Table 25.

 30

Error Code Parameter Description
SUCCESS Specifies successful completion.

INFORMATION Specifies information output.

WARNING
Specifies a warning state. Execution can continue but results may be
incorrect.

FAILURE Specifies a sever, unrecoverable error. Execution cannot continue.
UNDEFINED Specifies an undefined status.

Table 25. Error code parameters provided in the Error_Handler module.

The Error_Handler module also contains the Display_Message subroutine. This routine allows
message to be displayed on standard output (screen, the default), or written to a user specified
log file. An example of its usage is shown below,

USE Error_Handler
CHARACTER(*), PARAMETER :: ROUTINE_NAME = ‘My_Routine’
INTEGER :: Error_Status

Error_Status = calculate_widget_size()
IF (Error_Status /= SUCCESS) THEN
 CALL Display_Message(ROUTINE_NAME, &
 ‘Error calculating widget size., &
 Error_Status, &
 Message_Log = ‘error_log.txt’)
 RETURN
END IF

The output message format is,

“routine name”(“state description”) : “message”

For example, if an error occurs in the Display_Message routine attempting to write to the log
file, the output is,

DISPLAY_MESSAGE(FAILURE) : Error opening message log file

5.5 User Interface Routines

We have introduced the memory allocation and deallocation routines in Section 4. The user is
strongly recommended to use these routines to allocate/deallocate memory for the structures that
have pointer components. In this subsection we describe the rest of the user interface routines.

5.5.1 CRTM Initialization Routine CRTM_Init

The CRTM initialization routine is used to initialize the CRTM before the CRTM Forward or
K_Matrix models are called. It loads the required coefficient data and sets the initial content of
the ChannelInfo structure.

Calling sequence

 31

Error_Status = CRTM_Init(ChannelInfo, &
 SpcCoeff_File = SpcCoeff_File, &
 TauCoeff_File = TauCoeff_File, &
 AerosolCoeff_File = AerosolCoeff_File, &
 CloudCoeff_File = CloudCoeff_File, &
 EmisCoeff_File = EmisCoeff_File, &
 Sensor_Descriptor = Sensor_Descriptor, &
 NCEP_Sensor_ID = NCEP_Sensor_ID, &
 Sensor_Channel = Sensor_Channel, &
 File_Path = File_Path, &
 Quiet = Quiet, &
 Process_ID = Process_ID, &
 Output_Process_ID = Output_Process_ID, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument descriptions

The arguments for this function are described below in Table 26.

Name Type Dimension Description
Optional Input Arguments

SpcCoeff_File CHARACTER(*) Scalar
Name of the CRTM Binary format
SpcCoeff file. If not specified,
“SpcCoeff.bin” is the default.

TauCoeff_File CHARACTER(*) Scalar
Name of the CRTM Binary format
TauCoeff file. If not specified,
“TauCoeff.bin” is the default.

AerosolCoeff_File CHARACTER(*) Scalar
Name of the CRTM Binary format
ScatterCoeff file. If not specified,
“ScatterCoeff.bin” is the default.

CloudCoeff_File CHARACTER(*) Scalar
Name of the Binary format CloudCoeff
file. If not specified, “CloudCoeff.bin” is
the default.

EmisCoeff_File CHARACTER(*) Scalar
Name of the Binary format EmisCoeff
file. If not specified, “EmisCoeff.bin” is
the default.

File_Path CHARACTER(*) Scalar
Path for the input coefficient files. If not
specified, the current directory is the
default.

Sensor_Descriptor CHARACTER(*) Rank-1

List of satellite/sensor descriptors for
each channel the user wants to process. If
not specified, all the channels defined by
the SpcCoeff and TauCoeff data will be
selected in ChannelInfo. (see Appendix
B for a list of the sensor descriptors)

NCEP_Sensor_Id INTEGER Rank-1

List of NCEP sensor ids for each channel
the user wants to process. If not
specified, all the channels defined by the
SpcCoeff and TauCoeff data will be
selected in ChannelInfo. Ignored if the
Sensor_Descriptor argument is passed.

Sensor_Channel INTEGER Rank-1 List of channel numbers for each sensor
the user wants to process. Used with

 32

either the Sensor_Descriptor or
NCEP_Sensor_Id argument, and ignored
if neither of these are present.

Quiet INTEGER Scalar

Set (1) this argument to suppress
INFORMATION message output. By default
(0), INFORMATION messages are output.
If Quiet = 0, messages are output
If Quiet = 1, messages are suppressed.

Process_Id INTEGER Scalar

Set this argument to the MPI process ID
that this function call is running under. If
MPI is not being used, ignore this
argument. This argument is ignored if the
Quiet argument is set.

Output_Process_Id INTEGER Scalar

Set this argument to the MPI process ID
in which all INFORMATION message are to
be output. If this argument is used, the
Process_Id argument must also be used.
This argument is ignored if the Quiet
argument is set.

Message_Log CHARACTER(*) Scalar
Filename in which any messages will be
logged. Default action is to output
messages to screen (stdout).

Mandatory Output Arguments

ChannelInfo CRTM_ChannelInfo_type Scalar
Structure containing indexing
information for the sensor(s) and
channel(s) the user requested.

Optional Output Arguments
RCS_Id CHARACTER(*) Scalar String containing the Revision Control

System Id field for the module.
Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 26. Description of the CRTM_Init function arguments and result.

Discussion

(1) The ChannelInfo structure is set according to the user supplied information:
• If the optional argument pairs (Sensor_Descriptor, Sensor_Channel) and

(NCEP_Sensor_Id, Sensor_Channel) are not specified, all the channels registered
in the the SpcCoeff and TauCoeff data files will be selected;

• If (Sensor_Descriptor, Sensor_Channel) or (NCEP_Sensor_Id, Sensor_Channel) is
specified, the channel selection is based on the channel numbers given by
Sensor_Channel and the sensor/satellite platform IDs given by Sensor_Descriptor
or NCEP_Sensor_Id.

(2) The user does not need to allocate the ChannelInfo structure. CRTM_Init will allocate the
structure no matter it is already allocated or not.

 33

5.5.2 Channel Selection Routine CRTM_Set_ChannelInfo

After the CRTM initialization, the user may need to change the set of sensors and channels. The
function CRTM_Set_ChannelInfo may be called to reset the content of the structure ChannelInfo.

Calling sequence

 Select a sensor with all its available channels:

 Error_Status = CRTM_Set_ChannelInfo(Sensor_Descriptor, &
 ChannelInfo, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)
 or select a set of available channels:

 Error_Status = CRTM_Set_ChannelInfo(Sensor_Descriptors, &
 Sensor_Channels, &
 ChannelInfo, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument descriptions

The arguments for this function are described below in Table 27.

Name Type Dimension Description
Input Arguments

Sensor_Descriptor CHARACTER(*) Scalar
A satellite/sensor descriptor (see
Appendix B for a list of the sensor
descriptors and the following discussion)

Sensor_Descriptors CHARACTER(*)
Rank-1 (channel

dimension)

A list of satellite/sensor descriptors, used
to explain each of the channels listed in
Sensor_Channels. (see Appendix B for a
list of the sensor descriptors and the
following discussion)

Sensor_Channels INTEGER
Rank-1 (channel

dimension)
List of channel numbers, used with
Sensor_Descriptors (see discussion)

Process_Id INTEGER Scalar

Set this argument to the MPI process ID
that this function call is running under. If
MPI is not being used, ignore this
argument. This argument is ignored if the
Quiet argument is set.

Optional Input Arguments

Message_Log CHARACTER(*) Scalar
Filename in which any messages will be
logged. Default action is to output
messages to screen (stdout).

 Output Arguments

ChannelInfo CRTM_ChannelInfo_type Scalar
Structure containing indexing
information for the sensor(s) and
channel(s) the user requested.

Optional Output Arguments

 34

RCS_Id CHARACTER(*) Scalar String containing the Revision Control
System Id field for the module.

Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 27 Description of the CRTM_Set_ChannelInfo() function arguments and
result.

Discussion

Example 1: to request HIRS3 on NOAA-16 and all its channels, one may call the function as

 Error_status = CRTM_Set_ChannelInfo(‘hirs3_n16”, ChannelInfo)

where “hirs3_n16” is the sensor’s descriptor.

Example 2: if only channels 8, 9, 10 are needed, one may specify ChannelInfo as

 Sensor_descriptors(:) = “hirs3_n16”
 Sensor_Channels (:) = (/8, 9, 10/)
 Error_status = CRTM_Set_ChannelInfo(Sensor_descriptors, sensor_Channels, ChannelInfo)

where Sensor_descriptors and Sensor_Channels are both three-element arrays.

5.5.3 Forward Model Routine CRTM_Forward

The CRTM forward model is provided to simulate satellite radiometric observations.

Calling sequence

Error_Status = CRTM_Forward(Atmosphere, &
 Surface, &
 GeometryInfo, &
 ChannelInfo, &
 RTSolution, &
 Options = Options, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument description

The arguments for this function are described below in Table 28.

 35

Name Type Dimension Description
Mandatory Input Arguments

Atmosphere CRTM_Atmosphere_type
Scalar or

Rank-1 (M)
Atmopsheric state profile data. If rank-
1, M = number of profiles.

Surface CRTM_Surface_type
Scalar or

Rank-1 (M)
Surface state data. If rank-1, M =
number of profiles.

GeometryInfo CRTM_GeometryInfo_type
Scalar or

Rank-1 (M)
View geometry data. If rank-1, M=
number of profiles.

ChannelInfo CRTM_ChannelInfo_type Scalar
ChannelInfo structure returned in the
initialization function or the channel
selection function call.

Optional Input Arguments

Options CRTM_Options_type
Scalar or

Rank-1 (M)

Options structure containing the option
arguments for the CRTM. The
dimension should be the same as the
input Atmosphere structure.

Message_Log CHARACTER(*) Scalar
Filename in which any messages will be
logged. Default action is to output
messages to screen (stdout).

Mandatory Output Arguments

RTSolution CRTM_RTSolution_type
Rank-1 (L) or
Rank-2 (L×M)

Solution to the RT problem for each
requested channel (L), and each input
profile (M). If the input data is scalar,
this output is rank-1 (L). If the input
data is rank-1 (M), this output is rank-2
(L×M).

Optional Output Arguments

RCS_Id CHARACTER(*) Scalar String containing the Revision Control
System Id field for the module.

Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 28 Description of the CRTM_Forward() function arguments and result. L =
number of channels; M = number of profiles.

Discussions

(1) The contents of the input structures Atmosphere, Surface, GeometryInfo and ChannelInfo
must be appropriately specified. See Section 4 for their definitions and valid assignments.

(2) The structure component RTSolution%Layer_Optical_Depth is an array pointer and thus
must be allocated if the user requests the CRTM to return the total optical depth profile; it
is ignored if the user does not allocate the memory.

5.5.4 Jacobian Routine CRTM_K_Matrix

The Jacobian routine CRTM_K_Matrix computes radiance or brightness temperature derivatives
with respect to the input state variables.

 36

Calling sequence

 Error_Status = CRTM_K_Matrix(Atmosphere, &
 Surface, &
 RTSolution_K, &
 GeometryInfo, &
 ChannelInfo, &
 Atmosphere_K, &
 Surface_K, &
 RTSolution, &
 Options = Options, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument description

The arguments for this function are described below in Table 29.

 37

Name Type Dimension Description
Mandatory Input Arguments

Atmosphere CRTM_Atmosphere_type
Scalar or

Rank-1 (M)
Atmopsheric state profile data. If rank-
1, M = number of profiles.

Surface CRTM_Surface_type
Scalar or

Rank-1 (M)
Surface state data. If rank-1, M =
number of profiles.

RTSolution_K CRTM_RTSolution_type
Rank-1 (L) or

Rank-2 (L x M)

Structure containing the RT solution K-
matrix inputs. NOTE: (1)
RTSolution_K%Surface_Emissivity and
RTSolution_K%Layer_Optical_Depth
are not defined and therefore should be
ignored; (2)on EXIT from this function,
the contents of this structure may be
modified (e.g. set to zero.)

GeometryInfo CRTM_GeometryInfo_type
Scalar or

Rank-1 (M)
View geometry data. If rank-1, M=
number of profiles.

ChannelInfo CRTM_ChannelInfo_type Scalar ChannelInfo structure returned in the
initialization function call.

Optional Input Arguments

Options CRTM_Options_type
Scalar or

Rank-1 (M)

Options structure containing the option
arguments for the CRTM. The
dimension should be the same as the
input Atmosphere structure.

Message_Log CHARACTER(*) Scalar
Filename in which any messages will be
logged. Default action is to output
messages to screen (stdout).

Mandatory Output Arguments

Atmosphere_K CRTM_Atmosphere_type
Rank-1 (L) or

Rank-2 (L x M)

Structure containing the K-matrix
Atmosphere data. NOTE: On ENTRY to
this function, the contents of this
structure should be defined (e.g.
 initialized to some value based on the
 position of this function in the call
chain.)

Surface_K CRTM_Surface_type
Rank-1 (L) or

Rank-2 (L x M)

Structure containing the the K-matrix
Surface data. NOTE: On ENTRY to
this function, the contents of this
structure should be defined (e.g.
initialized to some value based on the
position of this function in the call
chain.)

RTSolution CRTM_RTSolution_type
Rank-1 (L) or
Rank-2 (L×M)

Solution to the RT problem for each
requested channel (L), and each input
profile (M). If the input data is scalar,
this output is rank-1 (L). If the input
data is rank-1 (M), this output is rank-2
(L×M).

Optional Output Arguments

RCS_Id CHARACTER(*) Scalar String containing the Revision Control
System Id field for the module.

 38

Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 29. Description of the CRTM_K_Matrix() function arguments and result.

Discussions

(1) The contents of the input structure arguments Atmosphere, Surface, GeometryInfo and
ChannelInfo must be appropriately specified. See Section 4 for their definitions and valid
assignments.

(2) To request the radiance Jacobinans (derivative of the radiance with respect to input state
variables), the user needs to set the following variables as:

 RTSolution_K%brightness_temperature = ZERO
 RTSolution_K%radiance = ONE

To request the brightness temperature Jacobinans (derivative of the brightness
temperature with respect to input state variables), the user needs to set the following
variables as:

 RTSolution_K%brightness_temperature = ONE
 RTSolution_K%radiance = ZERO

(3) The resulting Jacobians are stored in structure Atmospher_K and Surface_K. For

instance, Atmospher_K%Temperature(i) is the layer radiance or brightness temperature
Jacobian with respect to the temperature at layer i and Surface_K%Wind_Speed is the
radiance or brightness temperature Jacobian with respect to the surface wind. CRTM also
output the Jacobians with respect to the surface emissivity (at observation zenith angle)
held in structure RTSolution_K. Table 30 lists the Jacobians returned from the CRTM
calculations.

Variable Name Description

Atmosphere_K%Temperature
Atmosphere_K%Absorber

Atmosphere_K%Cloud% Effective_Radius
Atmosphere_K%Cloud% Water_Content

Surface_K%Water_Temperature Ocean surface only
Surface_K%Wind_Speed Microwave & Ocean surface only

RTSolution_K%Surface_Emissivity
Table 30. Currently available Jacobians. The units are determined by the units of

RTSolution%radiance or RTSolution%brightness_temperature and by
the units of the state variables.

 39

5.5.5 CRTM Destruction Routine CRTM_Destroy

The destruction routine CRTM_Destroy is called to deallocate memory occupied by the CRTM
coefficient data and the structure variable ChannelInfo. After this call, it is no long valid to call
CRTM_forward_Model and CRTM_K_Matrix, until the CRTM initialization routine is called
again to load a different (or the same) set of coefficient files and set the ChannelInfo structure.

Calling sequence

Error_Status = CRTM_Destroy(ChannelInfo, &
 Process_Id = Process_Id, &
 RCS_Id = RCS_Id, &
 Message_Log = Message_Log)

Argument description

The arguments of this function are described in Table 31.

Name Type Dimension Description
Mandatory Input/Output Arguments

ChannelInfo CRTM_ChannelInfo_type Scalar ChannelInfo structure. This argument is
deallocated in this routine.

Optional Input Arguments

Process_Id INTEGER Scalar

Set this argument to the MPI process ID
that this function call is running under.
If MPI is not being used, ignore this
argument.

Message_Log CHARACTER(*) Scalar
Filename in which any messages will be
logged. Default action is to output
messages to screen (stdout).

Optional Output Arguments
RCS_Id CHARACTER(*) Scalar String containing the Revision Control

System Id field for the module.
Function Result

Error_Status INTEGER Scalar
Return value indicating the error status.
The error codes are defined in the
error_handler module (see 5.4)

Table 31. Description of the CRTM_Destroy() function arguments and result.

 40

Appendix A Structure Member Definition Values

This appendix lists the various public parameters used inside structures in the CRTM. The values
listed here are the only valid values and will be added to as needed.

Users are strongly encouraged to refer to the values below by their symbolic parameter name not
a numerical value. The tables below list the parameters in a somewhat logical order, which may
or may not be the same as the numerical order. In addition, the actual numerical values assigned
to the parameters below can change at any time, whereas the symbolic names will not.

A.1 Atmosphere Structure

Abosrber ID
Absorber (Units) Parameter Name

H2O (mass mixing ratio, g/kg) H2O_ID

O3(volume mixing ratio, ppmv) O3_ID

A.2 Cloud Structure

Valid Cloud type Parameters
Cloud Type Parameter Name

No cloud NO_CLOUD

Water cloud WATER_CLOUD

Ice cloud ICE_CLOUD

Rain cloud RAIN_CLOUD

Snow cloud SNOW_CLOUD

Graupel cloud GRAUPEL_CLOUD

Hail cloud HAIL_CLOUD

A.3 Surface Structure

 41

A.3.1 Valid Land_Type Parameters
Land Type Parameter Name Land Type Parameter Name

Compacted soil COMPACTED_SOIL Grass soil GRASS_SOIL

Tilled soil TILLED_SOIL Broadleaf/Pine forest BROADLEAF_PINE_FOREST

Sand SAND Grass scrub GRASS_SCRUB

Rock ROCK Oil grass OIL_GRASS

Irrigated low vegetation IRRIGATED_LOW_VEGETATION Urban concrete URBAN_CONCRETE

Meadow grass MEADOW_GRASS Pine brush PINE_BRUSH

Scrub SCRUB Broadleaf brush BROADLEAF_BRUSH

Broadleaf forest BROADLEAF_FOREST Wet soil WET_SOIL

Pine forest PINE_FOREST Scrub soil SCRUB_SOIL

Tundra TUNDRA Broadleaf(70)/Pine(30) BROADLEAF70_PINE30

A.3.2 Valid Snow_Type Parameters
Snow Type Parameter Name

New snow New_Snow
Old snow Old_Snow

A.3.3 Valid WMO Sensor ID Parameters Used in the Surface Emissivity Model
Calculations

Surface type Sensor Name Sensor Channels WMO Sesnor ID

Ice, Snow AMSUA 1, 2, 3, 4 WMO_AMSUA
Ice, Snow AMSUB 1, 2 WMO_AMSUB
Ice, Snow AMSRE 1 to 12 WMO_AMSRE
Ice, Snow SSMI 1 to 7 WMO_SSMI

 42

Appendix B Sensor List

The sensors and channels currently covered by the CRTM are listed below.

Microwave Sensors
Sensor
name

Satellite
name

Sensor
descriptor

of
channels Channel number

AMSR-E AQUA amsre_aqua 12 1,2,3,4,5,6,7,8,9,10,11,12
AMSU-A AQUA amsua_aqua 15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
AMSU-A NOAA-15 amsua_n15 15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
AMSU-A NOAA-16 amsua_n16 15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
AMSU-A NOAA-17 amsua_n17 15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
AMSU-A NOAA-18 amsua_n18 15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
AMSU-B NOAA-15 amsub_n15 5 1,2,3,4,5
AMSU-B NOAA-16 amsub_n16 5 1,2,3,4,5
AMSU-B NOAA-17 amsub_n17 5 1,2,3,4,5

ATMS NPOESS-
C1 atms_c1 22 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21

,22
HSB AQUA hsb_aqua 4 1,2,3,4
MHS NOAA-18 mhs_n18 5 1,2,3,4,5
MSU TIROS-N msu_n05 4 1,2,3,4
MSU NOAA-06 msu_n06 4 1,2,3,4
MSU NOAA-07 msu_n07 4 1,2,3,4
MSU NOAA-08 msu_n08 4 1,2,3,4
MSU NOAA-09 msu_n09 4 1,2,3,4
MSU NOAA-10 msu_n10 4 1,2,3,4
MSU NOAA-11 msu_n11 4 1,2,3,4
MSU NOAA-12 msu_n12 4 1,2,3,4
MSU NOAA-14 msu_n14 4 1,2,3,4

SSM/I DMSP-13 ssmi_f13 7 1,2,3,4,5,6,7
SSM/I DMSP-14 ssmi_f14 7 1,2,3,4,5,6,7
SSM/I DMSP-15 ssmi_f15 7 1,2,3,4,5,6,7

SSMIS DMSP-16 ssmis_f16 24 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21
,22,23,24

SSM/T-1 DMSP-13 ssmt1_f13 7 1,2,3,4,5,6,7
SSM/T-1 DMSP-15 ssmt1_f15 7 1,2,3,4,5,6,7
SSM/T-2 DMSP-14 ssmt2_f14 5 1,2,3,4,5
SSM/T-2 DMSP-15 ssmt2_f15 5 1,2,3,4,5
WindSat Coriolis windsat_coriolis 16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

Infrared sensors
Sensor
name

Satellite
name

Sensor
descriptor

of
channels Channel number

AIRS AQUA airs_aqua 2378 1 to 2378

AIRS AQUA airsSUBSET_aqua 281

1,6,7,10,11,15,16,17,20,21,22,24,27,28,30,36,39,40,4
2,51,52,54,55,56,59,62,63,68,69,71,72,73,74,75,76,7

7,78,79,80,82,83,84,86,92,93,98,99,101,104,105,108,
110,111,113,116,117,123,124,128,129,138,139,144,1
45,150,151,156,157,159,162,165,168,169,170,172,17
3,174,175,177,179,180,182,185,186,190,192,198,201
,204,207,210,215,216,221,226,227,232,252,253,256,

257,261,262,267,272,295,299,300,305,310,321,325,3
33,338,355,362,375,453,475,484,497,528,587,672,78
7,791,843,870,914,950,1003,1012,1019,1024,1030,1
038,1048,1069,1079,1082,1083,1088,1090,1092,109

5,1104,1111,1115,1116,1119,1120,1123,1130,1138,1
142,1178,1199,1206,1221,1237,1252,1260,1263,126

6,1285,1301,1304,1329,1371,1382,1415,1424,1449,1

 43

455,1466,1477,1500,1519,1538,1545,1565,1574,158
3,1593,1614,1627,1636,1644,1652,1669,1674,1681,1
694,1708,1717,1723,1740,1748,1751,1756,1763,176

6,1771,1777,1780,1783,1794,1800,1803,1806,1812,1
826,1843,1852,1865,1866,1868,1869,1872,1873,187

6,1881,1882,1883,1911,1917,1918,1924,1928,1937,1
941,2099,2100,2101,2103,2104,2106,2107,2108,210

9,2110,2111,2112,2113,2114,2115,2116,2117,2118,2
119,2120,2121,2122,2123,2128,2134,2141,2145,214

9,2153,2164,2189,2197,2209,2226,2234,2280,2318,2
321,2325,2328,2333,2339,2348,2353,2355,2357,236

3,2370,2371,2377
AVHRR/2 TIROS-N avhrr2_n05 2 3,4
AVHRR/2 NOAA-06 avhrr2_n06 2 3,4
AVHRR/2 NOAA-07 avhrr2_n07 3 3,4,5
AVHRR/2 NOAA-08 avhrr2_n08 2 3,4
AVHRR/2 NOAA-09 avhrr2_n09 3 3,4,5
AVHRR/2 NOAA-10 avhrr2_n10 2 3,4
AVHRR/2 NOAA-11 avhrr2_n11 3 3,4,5
AVHRR/2 NOAA-12 avhrr2_n12 3 3,4,5
AVHRR/2 NOAA-14 avhrr2_n14 3 3,4,5
AVHRR/3 NOAA-15 avhrr3_n15 3 3,4,5
AVHRR/3 NOAA-16 avhrr3_n16 3 3,4,5
AVHRR/3 NOAA-17 avhrr3_n17 3 3,4,5
AVHRR/3 NOAA-18 avhrr3_n18 3 3,4,5

HIRS/2 TIROS-N hirs2_n05 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/2 NOAA-06 hirs2_n06 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/2 NOAA-07 hirs2_n07 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/2 NOAA-08 hirs2_n08 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/2 NOAA-09 hirs2_n09 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/2 NOAA-10 hirs2_n10 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/2 NOAA-11 hirs2_n11 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/2 NOAA-12 hirs2_n12 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/2 NOAA-14 hirs2_n14 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/3 NOAA-15 hirs3_n15 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/3 NOAA-16 hirs3_n16 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/3 NOAA-17 hirs3_n17 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19
HIRS/3 NOAA-18 hirs3_n18 19 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19

IMAGER GOES-08 imgr_g08 4 2,3,4,5
IMAGER GOES-09 imgr_g09 4 2,3,4,5
IMAGER GOES-10 imgr_g10 4 2,3,4,5
IMAGER GOES-11 imgr_g11 4 2,3,4,5
IMAGER GOES-12 imgr_g12 4 2,3,4,6

MODIS AQUA modis_aqua 16 20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36
MODIS TERRA modis_terra 16 20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36

SOUNDER GOES-08 sndr_g08 18 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
SOUNDER GOES-09 sndr_g09 18 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
SOUNDER GOES-10 sndr_g10 18 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
SOUNDER GOES-11 sndr_g11 18 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18
SOUNDER GOES-12 sndr_g12 18 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18

	1 This Document
	2 CRTM Overview
	2.1 CRTM Components
	2.2 Forward, Tangent-linear, Adjoint and K_Matrix Models
	2.3 Software Characteristics
	2.4 Sensor Coverage
	3 CRTM Setup
	3.1 Builidng the CRTM library
	3.2 Compiling the Test Program

	4 CRTM Derived Data Types (Structures)
	4.1 Atmosphere Structure
	4.1.1 Structure Components
	4.1.2 Memory Allocation Routine
	4.1.3 Structure Destruction Routine

	4.2 Surface Structure
	4.2.1 Structure Components
	4.2.2 Memory Allocation Routine
	4.2.3 Structure Destruction Routine

	4.3 GeometryInfo Structure
	4.3.1 Structure Components

	4.4 ChannelInfo Structure
	4.4.1 Structure Components

	4.5 RTSolution Structure
	4.5.1 Structure Components
	4.5.2 Memory Allocation Routine
	4.5.3 Structure Destruction Routine

	4.6 Options Structure
	4.6.1 Structure Components
	4.6.2 Memory Allocation Routine
	4.6.3 Structure Destruction Routine

	5 CRTM User Interface
	5.1 CRTM Floating-Point Kind Type
	5.2 Atmosphere Profile Layering Scheme
	5.3 CRTM Coefficient Data files
	5.4 Error codes and message handling
	5.5 User Interface Routines
	5.5.1 CRTM Initialization Routine CRTM_Init
	5.5.2 Channel Selection Routine CRTM_Set_ChannelInfo
	5.5.3 Forward Model Routine CRTM_Forward
	5.5.4 Jacobian Routine CRTM_K_Matrix
	5.5.5 CRTM Destruction Routine CRTM_Destroy

